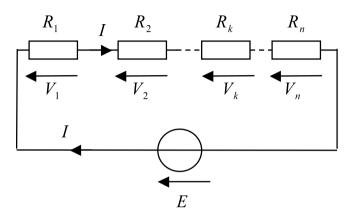


Théorèmes de l'électrocinétique

Eléments de cours

Diviseurs

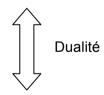
Diviseur de tension



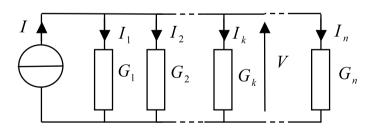
$$I = \frac{E}{\sum_{i=1}^{n} R_{i}} = \frac{V_{1}}{R_{1}} = \dots = \frac{V_{k}}{R_{k}} \quad \forall \ k = 1, 2, \dots, n$$

$$V_k = E \frac{R_k}{\sum_{i=1}^n R_i}$$

Condition d'utilisation : Même courant I dans les R_k



Diviseur de courant



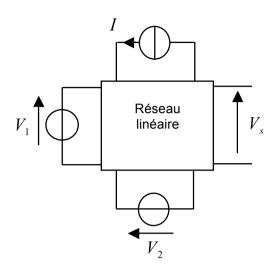
$$V = \frac{I}{\sum_{i=1}^{n} G_{i}} = \frac{I_{1}}{G_{1}} = \dots = \frac{I_{k}}{G_{k}} \quad \forall \ k = 1, 2, \dots, n$$

$$I_{k} = I \quad \frac{G_{k}}{\sum_{i=1}^{n} G_{i}}$$

$$I_k = I \quad \frac{G_k}{\sum_{i=1}^n G_i}$$

Condition d'utilisation : Même tension V aux bornes des Gk

Théorème de superposition



$$V_S = V_{S1} + V_{S2} + V_{S3}$$

$$A_1 = \left(\frac{V_{S1}}{V_1}\right)_{V_2, I=0}$$
 sans dimension []

Les sources $V_{\scriptscriptstyle 2}$ et I sont éteintes et on calcule la contribution $V_{\scriptscriptstyle S1}$ de $V_{\scriptscriptstyle 1}$ à $V_{\scriptscriptstyle S}$ Ou

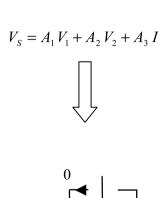
On éteint toutes les sources (indépendantes) sauf celle dont on veut calculer la contribution

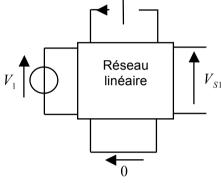
$$A_2 = \left(\frac{V_{S2}}{V_2}\right)_{V_1, I=0}$$
 sans dimension []

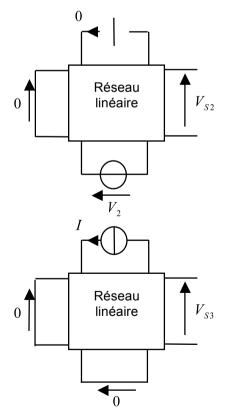
Les sources $V_{\rm I}$ et I sont éteintes et on calcule la contribution $V_{\rm S2}$ de $V_{\rm 2}$ à $V_{\rm S}$

$$A_3 = \left(\frac{V_{S3}}{I}\right)_{V_1, V_2 = 0}$$
 en Ohms $\left[\Omega\right]$

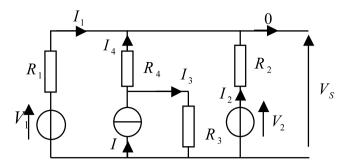
Les sources $V_{\scriptscriptstyle 1}$ et $V_{\scriptscriptstyle 2}$ sont éteintes et on calcule la contribution $V_{\scriptscriptstyle S3}$ de I à $V_{\scriptscriptstyle S}$



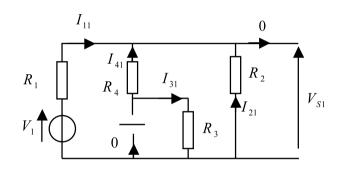




Mise en œuvre du théorème de superposition

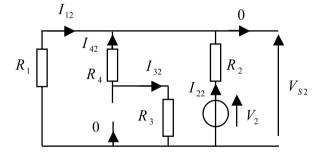


La tension $\,V_{\scriptscriptstyle S}\,$ et les courants $\,I_{\scriptscriptstyle 1}\,I_{\scriptscriptstyle 2}\,I_{\scriptscriptstyle 3}\,I_{\scriptscriptstyle 4}\,$ sont inconnus



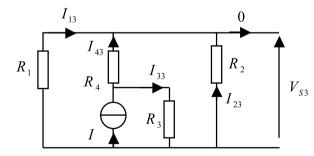
Contribution de V₁

On calcule la tension $\,V_{\rm S1}\,$ et les courants $\,I_{\rm 11}\,I_{\rm 21}\,I_{\rm 31}\,I_{\rm 41}\,$



Contribution de V₂

On calcule la tension $V_{\rm S2}$ et les courants $I_{\rm 12}\,I_{\rm 22}\,I_{\rm 32}\,I_{\rm 42}$



Contribution de I

On calcule la tension $V_{\rm S3}$ et les courants $I_{\rm 13}\,I_{\rm 23}\,I_{\rm 33}\,I_{\rm 43}$

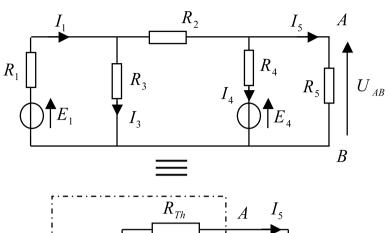
Compte tenu des sens conventionnels on déduit :

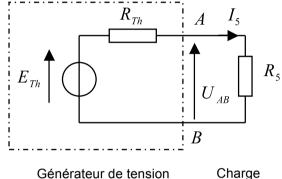
$$V_S = V_{S1} + V_{S2} + V_{S3}$$

$$I_1 = I_{11} + I_{12} + I_{13}$$

etc

Théorème de Thévenin





équivalent de Thévenin

Problème type:

Déterminer le courant l₅ qui traverse R₅

On remplace tout ce qui est connecté à R5 (le réseau) par un modèle de Thévenin, générateur de tension (fictif) qui aura le même comportement que le réseau vu des bornes A

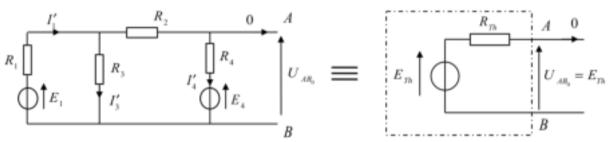
Quand on connaîtra les paramètres du modèle :

$$U_{AB} = E_{Th} \frac{R_{5}}{R_{5} + R_{Th}}$$

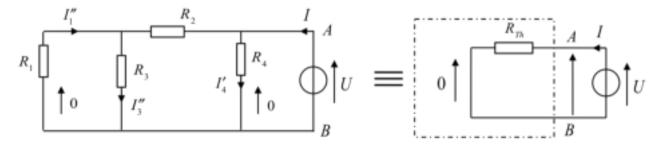
$$I_{5} = \frac{E_{Th}}{R_{Th} + R_{5}} = \frac{U_{AB}}{R_{5}}$$

Détermination des paramètres de la source équivalente

Détermination de E_{Th}



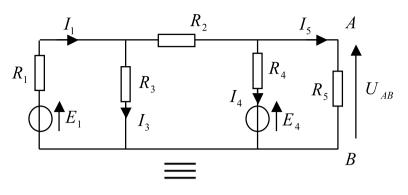
Détermination de la résistance de Thévenin R_{Th}

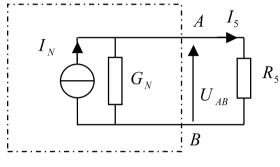


On éteint les sources indépendantes, on place une source de tension U qui fait circuler un courant I et enfin, on détermine le rapport U/I d'où :

$$R_{AB} = \frac{U}{I} = R_{Th}$$

Théorème de Norton





Générateur de courant équivalent de Norton

Charge

Problème type:

Déterminer le courant 15 qui traverse R5

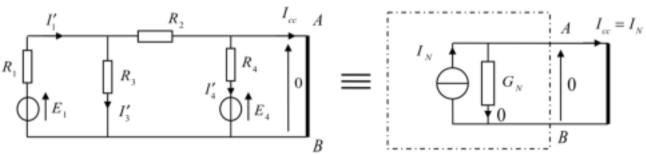
On remplace tout ce qui est connecté à R5 (le réseau) par un modèle de Norton, générateur de courant qui aura le même comportement que le réseau vu des bornes A et B.

Quand on connaîtra les paramètres du modèle :

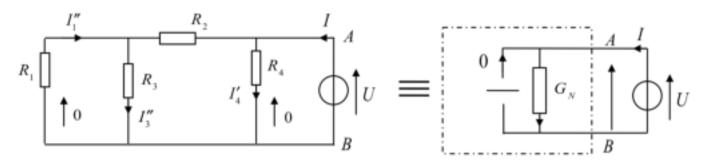
$$U_{AB} = R_5 I_5 = \frac{I_N}{G_5 + G_N}$$

$$I_5 = I_N \frac{G_5}{G_N + G_5}$$

Détermination de $I_{\scriptscriptstyle N}$



Détermination de la résistance de Norton R_N ou la conductance G_N

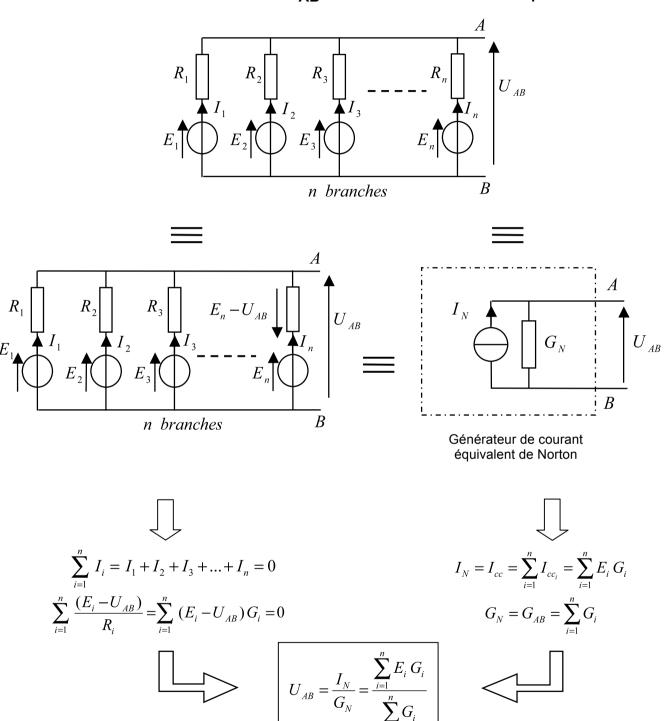


On éteint les sources indépendantes, on place une source de tension U qui fait circuler un courant I et enfin, on détermine le rapport U/I d'où :

$$R_{AB} = \frac{U}{I} = R_{N} = \frac{1}{G_{N}} = \dots = R_{Th}$$

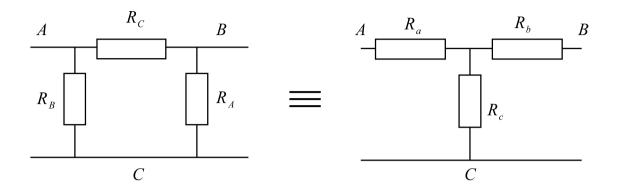
Théorème de Millman

Problème : déterminer la tension UAB aux bornes de n branches en parallèle



UAB : tension aux bornes de n branches en parallèle

Théorème de Kennelly Transformation (triangle-étoile) ou (Π en T)



Transformation de Π en T (triangle \rightarrow étoile)

 $R_A R_B R_C$

Transformation de T en Π (étoile \rightarrow triangle)

 $R_a R_b R_c$

$R_a R_b R_c$	Inconnues	$R_A R_B R_C$	
$R_a = \frac{R_B R_C}{R_A + R_B + R_C}$		$G_A = \frac{G_b G_c}{G_a + G_b + G_c}$	
$R_b = \frac{R_C R_A}{R_A + R_B + R_C}$		$G_B = \frac{G_c G_a}{G_a + G_b + G_c}$	}
$R_c = \frac{R_A R_B}{R_A + R_B + R_C}$		$G_C = \frac{G_a G_b}{G_a + G_b + G_c}$	

Données