
BTS EEC	ETUDE DES CONSTRUCTIONS	S.1.2. Confort du bâtiment
Cours		Date : / /

ECLAIRAGE INTERIEUR - ECLAIRAGISME

1 - APPROCHE QUALITATIVE

1-1 Objectifs

<u> </u>	
Le local	Analyse
	BESOINS QUALITATIFS
DESTINATION →	 ♦ CHOISIR : - Type de lampes - Type de luminaires • BESOINS QUANTITATIFS
CARACTERISTIQUES →	CALCULER : - Nombre de luminaires - Répartition en plan

1-2 Conséquences sur les connaissances minimales

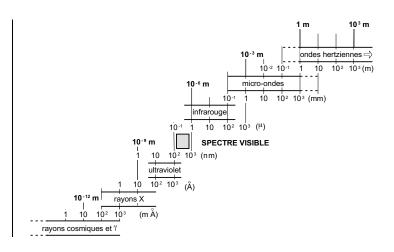
ASPECT THEORIQUE		ASPECT NORMATIF	ASPECT TECHNOLOGIQUE	
Dhysiaus	La lumière	Loopermon	Les tunes de lamase	
Physique	Les couleurs Les grandeurs	Les normes Les recommandations	Les types de lampes Les types de luminaires	
Physiologie	Perception Fatigue	Les labels	Les modes d'éclairage	

2 - LA LUMIERE

2-1 Nature de la lumière

La lumière est une des plages d'ondes électromagnétiques qui nous parviennent. Pour la lumière, on parle de spectre visible.

Longueur d'onde : λ Fréquence : f


Célérité : c (≈ 300 000 km/s)

$$\lambda = \frac{c}{f}$$

Unités de longueur d'onde au voisinage du

visible:

L'Angstrœm : 10^{-10} m Le nanomètre : 10^{-9} m Le micron (μ) : 10^{-6} m

2-2 Longueurs d'ondes du spectre visible

Rayonnement	Long.onde (nm)
UV-C	180-280
UV-B	280-315
UV-A	315-380
Violet externe	400
Violet moyen	420
Violet bleu	440
Bleu moyen	470
Bleu vert	500
Vert moyen	530
Vert jaune	560
Jaune moyen	580
Jaune orangé	590
Orangé moyen	600
Orangé rouge	610
Rouge moyen	650
Rouge externe	780
IR courts	780-2000
IR moyens	2000-4000
IR longs	4000-10000

Les rayonnements non visibles (UV et IR) ont, dans certains cas, une influence sur la perception des couleurs.

3 - NOTRE PERCEPTION DE LA LUMIERE ET DES OBJETS

Notre vision des objets est en fait la perception d'un rayonnement émis.

3-1 - L'œil

En simplifiant:

L'œil s'adapte

- · A l'intensité lumineuse,
- · A la distance des objets

L'œil reçoit :

- Les formes projetées sur la rétine.
- · Les couleurs du spectre émis.

3-2 - La rétine

Elle reçoit l'image projetée des objets. Elle dispose de capteurs photo sensibles :

- Les cônes R ; V ; B (vision diurne)
- Les bâtonnets (vision nocturne)

3-3 - Perception des couleurs

En période diurne : vision photopique

Ce sont les cônes qui sont mobilisés.

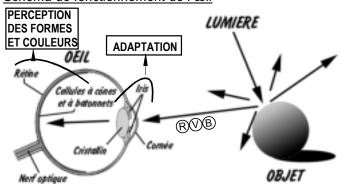
Ils ne captent que les couleurs Rouge, Vert et Bleu du spectre reçu.

En fonction du « dosage » RVB, le cerveau procède à une addition de ces couleurs fondamentales dont le résultat est une image en couleurs des objets.

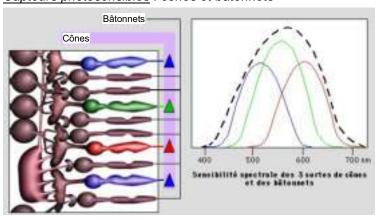
En période nocturne : vision scotopique

Seuls les bâtonnets réagissent à la faible luminosité et le résultat est une image monochromatique des objets.

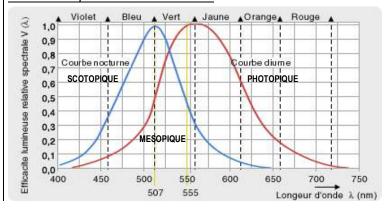
« Entre les deux » : vision mésopique


Cônes et bâtonnets sont mobilisés.

Les couleurs de l'image perçue dépendent du niveau de l'éclairement.


Couleurs des objets (remarque) :

Les couleurs perçues dépendent de la nature de la lumière qui éclaire l'objet.


Schéma de fonctionnement de l'œil

Capteurs photosensibles : cônes et bâtonnets

Sensibilité spectrale des couleurs :

3 - 4 - Autres paramètres de la vision (Extrait NF X 90)

<u>Adaptation</u>: processus de modification de l'état d'un système visuel qui a été ou est soumis à des stimulus lumineux de différentes luminances, répartitions spectrales et étendues angulaires.

<u>Accommodation</u>: ajustement de la convergence du cristallin qui permet d'amener sur la rétine l'image d'un objet situé à une distance donnée.

Acuité visuelle : capacité de perception distincte de fins détails ayant une très petite séparation angulaire.

<u>Contraste(s)</u>: Évaluation de la différence d'aspect de deux ou plusieurs parties du champ observé, juxtaposées dans l'espace ou dans le temps (d'où contraste de luminosité, contraste de clarté, contraste de couleur, contraste simultané, contraste successif, etc.)

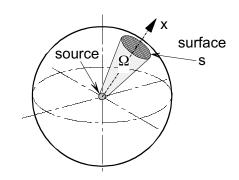
<u>Éblouissement</u> : conditions de vision dans lesquelles on éprouve une gêne ou une réduction de l'aptitude à distinguer des détails ou des objets, par suite d'une répartition défavorable des luminances ou d'un contraste excessif

Luminosité: attribut d'une sensation visuelle selon lequel une surface paraît émettre plus ou moins de lumière

4 - NOTIONS DE PHOTOMETRIE

4-1 Flux lumineux : F en lumen (lm)

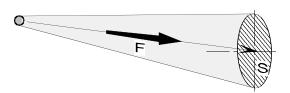
Caractérise la quantité de lumière, émise par seconde par une source lumineuse indépendamment de la répartition spatiale.


4-2 Intensité lumineuse : I en candela (cd)

Grandeur définissant l'intensité du flux lumineux suivant une direction.

Flux lumineux suivant le cône de direction x : F_x

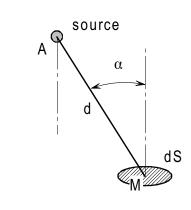
Angle solide du cône : $\Omega = \frac{s}{R^2}$ (stéradians)


Intensité lumineuse suivant x : $I_x = \frac{F_x}{\Omega} = F_x \frac{R^2}{s}$

4-3 Eclairement : E en lux (lx)

Il s'agit de la densité de lumière reçue par une surface éclairée

Eclairement : $E = \frac{F}{S}$ en lux (1lx = 1 lm/m²)

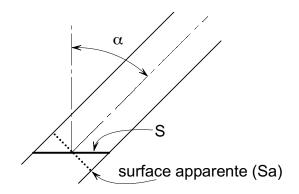

4-4 Relation entre éclairement et intensité lumineuse

Pour la surface élémentaire dS :

$$\text{\'eclairement}: E = \frac{dF}{dS}$$

Angle solide :
$$d\Omega = \frac{dS \cdot \cos \alpha}{d^2}$$

Intensité lumineuse : $I = \frac{dF}{d\Omega} = \frac{dF \cdot d^2}{dS \cdot \cos \alpha} = E \cdot \frac{d^2}{\cos \alpha}$ $Relation : E = \frac{I \cdot \cos \alpha}{d^2}$


Éclairement d'une surface :

- Proportionnel à l'intensité lumineuse de la source
- Inversement proportionnel au carré de la distance parcourue par la lumière

4-5 Luminance: L en cd/m2

Pour une source non ponctuelle ou une surface réfléchissante, la luminance est :

$$L = \frac{I}{Sa} \Rightarrow L = \frac{I}{S \cdot \cos \alpha}$$

4-6 Relation entre éclairement et luminance

Pour corps suivant la loi de Lambert (la surface diffusante présente la même luminance dans toutes les directions), et possédant un facteur de réflexion ρ

Nous avons : $E = \frac{\Pi \cdot L}{\rho}$

CARACTERISTIQUES DES APPAREILS D'ECLAIRAGE

A l'approche théorique, il convient d'ajouter des paramètres intervenant dans les projets de choix et de définition des appareils d'éclairage.

1 - LES LAMPES

1-1 - Les différentes familles

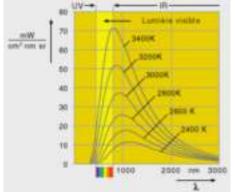
1-2 - Flux lumineux (Fla en Im) (paramètre « quantitatif » des projets d'éclairage)

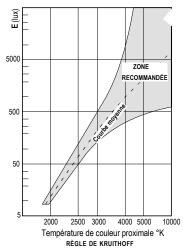
Traduit la « luminosité » de la source.

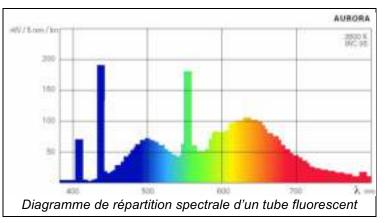
1-3 Température de couleurs (paramètre « qualitatif » des projets d'éclairage)

- Il s'agit d'une notion associée à la densité spectrale d'existence énergétique du corps noir de Planck qui, au fur et à mesure de l'augmentation de la température émet une part de plus en plus grande du rayonnement dans le visible.

Température de couleur proximale (Tcp)


La température de couleur (Tcp) est la couleur apparente d'une source lumineuse mesurée en degré Kelvin (°K) par référence au corps noir de Planck (ou barre de métal) chauffé jusqu'à ce qu'il émette un rayonnement de même chromaticité que la source.


- Teintes chaudes : de 2000 à 3000 °K
 - (prédominance jaune-rouge)
- Teintes moyennes : de 3000 à 5000 °K (impression blanc neutre)
- Teintes froides : au dessus de 5000 °K
 - (prédominance bleu-violet)


Règle de Kruithoff:

Pour le confort visuel, la température de couleur (Tcp) doit être adaptée à l'éclairement (E) recherché.

Densité spectrale d'exitance énergétique du corps noir (de Planck)

1-4 - Indice de rendu des couleurs d'une lampe (I.R.C. ou Ra)

(paramètre « qualitatif » des projets d'éclairage)

Il s'agit du degré de concordance de la couleur d'un objet, par rapport à son apparence sous l'effet d'une source lumineuse de référence → indice allant de 0 à 100

- I.R.C. < 70 : médiocre industrie mécanique
- I.R.C. > 80 : bonne qualité
- I.R.C. > 85 : salles de classe ou bureaux
- I.R.C. > 95 : musées, galeries, certains magasins

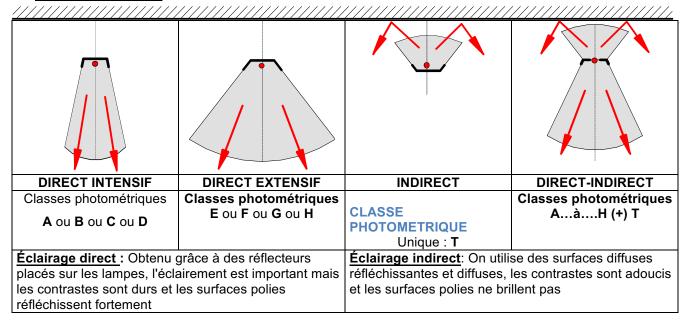
Nota : Malgré une température de couleur identique, des lampes peuvent avoir des indices de rendu des couleurs différents en raison de différences dans la répartition spectrale de leur rayonnement.

1-5 Types de Lampes et caractéristiques

Une lampe est aussi caractérisée par sa durée de vie et son efficacité lumineuse = $\frac{Flux\ lu\, min\, eux\ \acute{e}mis\ (lm)}{Puis sance\ \acute{e}lectrique\ absorbée\ (W)}$

En principe, 3 types différents de générateurs de lumière peuvent être distingués: radiateur thermique, décharge à basse pression et décharge à haute pression.

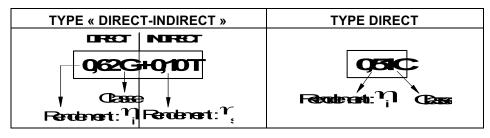
			CARACTERISTIQUES			
	,	DEFINITIONS	I.R.C.	Efficacité Lumineuse	Durée	
INCANDESCENCE	Classiques:	C'est le type même du radiateur thermique, dans lequel un filament de tungstène échauffé par le passage d'un courant électrique devient lumineux à une température d'environ 2600 à 3000°C. Cet échauffement est obtenu, dans une ampoule de verre dans une atmosphère de gaz inerte destiné à diminuer l'évaporation du filament (argon, krypton)		10 à 16 Im/W	1000 h	
INCAND	Halogènes:	Comparables, par leur construction et leur mode de fonctionnement, aux lampes à incandescence, elles contiennent, par contre, de petites adjonctions d'halogènes (brome, chlore, fluor, iode,) dans le gaz de remplissage afin d'éviter presque complètement le noircissement provoqué par l'évaporation des atomes de tungstène.		20 à 25 Im/W	2000 h	
	Principe:	Lorsqu'on applique une tension d'amorçage dans ur contenant des gaz rares, des vapeurs métalliques, in L'arc généré dans les substances gazeuses de rem dû à l'ionisation du gaz par les électrons. Un stabilisateur nommé ballast est nécessai	l se produ plissage é	it un arc de dée met un rayonn	charge. ement	
	Vapeur de sodium:	 Le tube contient du néon additionné de sodium : condensé à froid sur les parois du tube vaporisé lors de l'amorçage et de l'élévation de température en découlant 	20	110 lm/W	4000 h à 5000 h	
	Vapeur de mercure:	Argon + très peu de mercure	40	50 lm/W	12000 h	
RGE	lodures métalliques:	Décharge dans des vapeurs de mercure additionnées d'iodures métalliques	70	90 lm/W		
A DECHARGE	Tubes fluorescents:	La décharge se produit dans un tube contenant un gaz rare, des sels alcalino-terreux et une faible quantité de mercure, la paroi du tube est recouverte d'une matière fluorescente (luminescente) Le rayonnement UV obtenu lors des décharges dans la vapeur de mercure, d'abord non utilisé pour la génération de lumière est transformé en lumière visible par des poudres fluorescentes.	Var.	50 à 70 Im/W	7500 h	
	Auxiliaires :	il importe d'assurer: L'amorçage préchauffage des électrodes par starter électrodes auxiliaires - la stabilisation self~ + condensateur ballast électronique				


<u>Nota</u> : Les LED (Light Emitting Diode) sont des diodes électroluminescentes dont le principe de fonctionnement est analogue à celui des tubes fluorescents.

2 - LES LUMINAIRES

Appareils (déterminants) qui vont « utiliser » le flux des lampes pour assurer l'éclairage voulu.

2-1 Les type d'éclairage

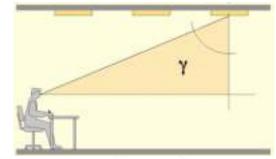


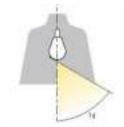
2-2 Rendement photométrique d'un luminaire

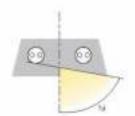
Rendement d'un luminaire : $\eta = \frac{Flux \ sor \tan t \ du \ lu \min aire}{Flux \ total \ des \ lampes \ du \ lu \min aire}$

Ces caractéristiques du luminaire sont regroupées dans le SYMBOLE PHOTOMETRIQUE : $\eta_i X + \eta_s T$

2-3 Classe de qualité de l'éclairage d'un luminaire


CLASSES	TÂCHES OU ACTIVITÉS
	Exécution de tâches visuelles très exigeantes, par exemple assemblages électroniques minutieux, arts graphiques, bijouterie, joaillerie.
В	Exécution de tâches avec des exigences visuelles particulières, par exemple contrôle fin. Exécution de tâches avec des exigences visuelles modérées mais demandant une concentration importante et continue, par exemple travail de bureau, assemblage de composants de petite taille
	Exécution de tâches avec des exigences visuelles et une concentration modérées, par exemple travail d'atelier en position assise, assemblage de pièces de taille moyenne pour un travail debout.
D	Exécution de tâches avec des exigences visuelles simples exigeant une concentration normale pour des travailleurs qui se déplacent fréquemment dans une zone très limitée, par exemple manutention de service autour d'une grosse machine, montage de pièces de dimensions importantes.
E	Locaux dans lesquels les personnes n'ont pas de poste de travail fixe, elles se déplacent pour 50 exécuter des tâches de très faibles exigences visuelles. Locaux qui ne sont pas utilisés de façon continue par les mêmes personnes.


2 - 4 Angle de défilement d'un luminaire


Lorsqu'un observateur s'approche d'un appareil à grille il atteint une position à partir de laquelle la lampe, jusqu'alors cachée, devient visible.

La direction matérialisée par l'œil et la lampe forme avec la verticale passant par la lampe un angle appelé angle de défilement : γ_d

Cette donnée angulaire caractérise aussi les risques d'éblouissement dus à l'ensemble lampe - luminaire.

L'angle de défilement γ_d est évalué par rapport à la partie inférieure du corps lumineux.

3 - ENVIRONNEMENT LUMINEUX - EXIGENCES « REGLEMENTAIRES »

3-1 Eclairement recommandé pour les projets d'éclairage

Éclairement moyen initial :

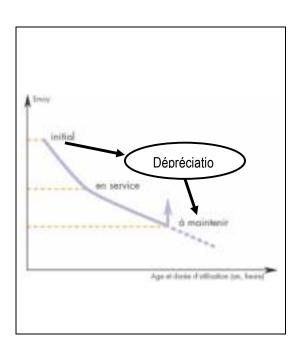
C'est l'éclairement moyen lorsque l'installation est neuve.

L'éclairement moyen initial est la valeur prise en considération dans les calculs

relatifs au projet d'éclairage.

En absence d'indication, l'éclairement moyen initial est de :

- 1,5 fois l'éclairement à maintenir pour les locaux à faible empoussièrement,
- 1,75 fois l'éclairement à maintenir pour les locaux à empoussièrement moyen,
- 2 fois l'éclairement à maintenir pour les locaux à empoussièrement élevé.


Éclairement moyen en service :

C'est l'éclairement moyen que l'on doit constater au milieu de la période

couvrant 2 interventions consécutives de maintenance.

Éclairement moyen à maintenir :

C'est l'éclairement moyen, juste encore acceptable avant une intervention d'entretien : nettoyage des luminaires complété ou non par le remplacement simultané des lampes.

Les niveaux d'éclairement (E) recommandés par l'A.F.E. sont les éclairements moyens à maintenir.

EXEMPLES D'ECLAIREMENTS MOYENS A MAINTENIR (Lux)

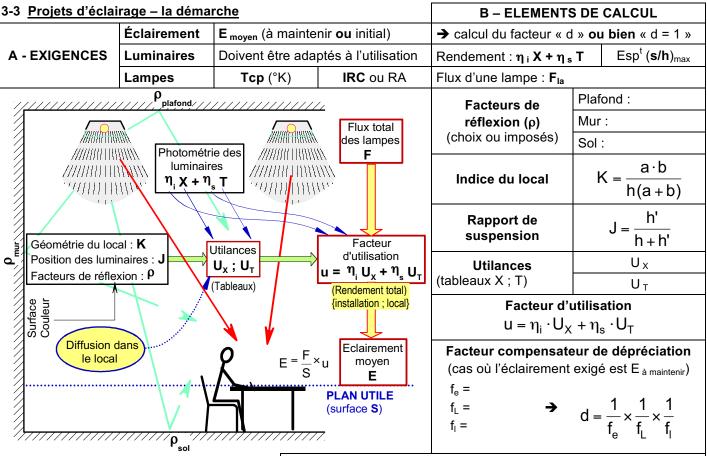
BATIMENTS INDUSTRIELS	
Bâtiments agricoles	10
Poulaillers	40
Étables, salles de traite Étables, couloirs d'alimentation	125 25
Préparation des aliments du bétail	125
Laiterie	250
Industries alimentaires	230
Brassage	250
Préparation du chocolat brut	125
Conditionnement bouchées confiserie	425
Conserveries, mise en boîte	425
Laiteries	250
Cuisson	250
Industries du tabac	
Echantillonnage	425
Industries du bois	
Scieries	125
Travail à l'établi	250
Travail aux machines	425
Finition, polissage, vernissage	425
Contrôle final	625
Industries céramiques	
Fours	125
Moulage, presses	250
Vernissage	425
Décoration	425
Industries chimiques	
Éclairage de circulation	175
Broyeurs, malaxeurs	250
Calandrage, injection	425
Fabrication des pneus	250
Salles de contrôle	425
Laboratoires	425
Comparaisons de couleurs	850
Industries du cuir	105
Vernissage	425
Companiente de couloure	850
Comparaisons de couleurs Constructions électriques et électroniques	850
	625
Montage	425
Travail de pièces moyennes Travail de petites pièces	625
Travail très délicat ou très petites pièces	1500
Fonderies	1300
Nettoyage	175
Modelage grossier	175
Modelage fin	425
Sablerie	250
Fabrication des noyaux	425
Industries du livre	
Typographie	425
Pupitre de composition	625
Lithographie	850
Reliure de livres	425
Mécanique générale	
Machines-outils et établis, soudure	250
Travail de pièces moyennes	425
Travail de petites pièces	625
Travail très délicat ou très petites pièces	1500
Industries du papier	
Calandrage	250
Stockage	•
Entrepôts 1	25

Industries du vêtement	
Piqûre	850
Contrôle final	850
Industries textiles	
Cardage, étirage	250
Bobinage	250
Filage	425
Tissage gros ou clair	425
Tissage fin ou foncé	625
Comparaison de couleurs	850
Industries du verre	
Chaufferie	125
Composition	125
Soufflage ou moulage	250
Décoration	425
Gravure	425
BUREAUX ET LOCAUX ADMINISTRATIFS	720
Bureaux de travaux généraux	425
Dactylographie	425
Salles de dessin, tables	850
ETABLISSEMENTS D'ENSEIGNEMENT	000
Salles de classe (*)	225
Tableaux ^(*)	325 425
Amphithéâtres	325
Tables de démonstration	625
Laboratoires	625
Salles de dessin d'art	425
Bibliothèques, tables de lecture	425
MAGASINS	T
Boutiques	200
Self-services	300
Grandes surfaces	500
LOISIRS, RESIDENCES, LIEUX DE CULTE	
Salles de spectacles	
Foyers	125
Amphithéâtres	80
Salles de cinéma	40
Salles des fêtes	250
Habitations	
Lecture	325
Travail d'écolier	325
Couture	625
Chambre à coucher, éclairage localisé	175
Préparations culinaires	425
Coin bricolage	425
Hôtels	
Réception, halls	250
Salles à manger	250
Cuisines	425
Chambres et annexes	250
Eglises	
Nef	80
Chœur	125
CIRCULATION	
Couloirs, escaliers	80-250
ESPACES EXTERIEURS	
Entrées, cours, allées	25
Voies de circulation couvertes	40
Docks et quais	60
Postes de pompage, stations services	250
1 dotos de pompage, stations services	200

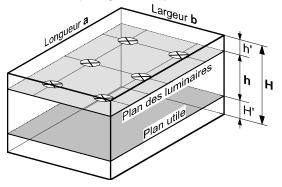
<u>Logements collectifs : parties communes</u> → voir NF C 15.100

Établissements d'enseignement → voir label Promotélec « salles de classes »

3-2 Facteur de dépréciation (pour le calcul d'un éclairement à maintenir)


Le flux lumineux d'une installation décroît dans le temps car :

- Empoussièrement des locaux
- Vieillissement des lampes
- · Altération des luminaires


Ces paramètres de dépréciation sont pris en compte à l'aide des facteurs suivant :

Facteur d'empoussièrement	Faible Moy		yen		Fort
f _e	0,95 0,8		0,85		0,75
Facteur de vieillissement des lampes f _L	Incandescent Halogène 0,9 0,95		Fluorescent Déchar 0,85 0,9		Décharge 0,9
Facteur d'altération du luminaire	Luminaire courant		Luminaire spécial		e spécial
f _I	0,85		0,95		95

Facteur compensateur de dépréciation: $d = \frac{1}{f_e} \times \frac{1}{f_L} \times \frac{1}{f_I} \quad (d \ge 1)$

Caractéristiques géométriques :

LES RELATIONS

Flux total émis par les lampes (mise en service): Ftot = N.n.Fla

N = nombre de luminaires

n = nombre de lampes par luminaire

Flux total initial à prévoir : (Pour un plan utile de surface S)

$$F_{tot.\,ini} \times u = E_{ini} \times S \ge (E_{\text{à maintenir}} \times d) \times S$$

Nombre de luminaires à prévoir (pour S = a x b) :

$$N \ge \frac{(E \times a \times b) \times d}{(n \times F_{la}) \times u}$$
 avec d = 1 si E = E_{initial}

ÉTUDE SIMPLIFIEE D'ECLAIRAGE INTERIEUR

1 - LES DONNEES

1-1 Le local

Activité :	GEOMETRIE (co	tes en mètres) :	
Éclairement sur plan utile : E ≥ lux	Longueur :	a =	
Largeur b	Largeur :	b =	
Longueur a	Hauteur local :	H =	
L0119 h' A	Plan utile :	H' =	
ires	Suspension :	h' =	
Plan des luminaires h H' H'	Hauteur utile	h =	
an des l	FACTEURS DE R	EFLEXION (ρ):	
Plan utile H'	Plafond :		
Plan	Murs :	X 10	
	Sol:	→	

1-2 Choix de l'appareillage

LUMIN	Rapport s/h maximum		
TYPE	long	trans	

LAMPES

TYPE	T ^{re} de couleurs	I.R.C.	FLUX UNITAIRE	n ^{bre} par lum.
	T = °K		F _{la} = Im	n =

2 - CALCULS PRELIMINAIRES

2-1 Caractéristiques géométriques du local

INDICE DU LOCAL	RAPPORT DE SUSPENSION
$K = \frac{a \cdot b}{h(a+b)} =$	$J = \frac{h'}{h + h'} =$
K =	J =

2-2 Facteur compensateur de dépréciation de l'installation (pour un éclairement à maintenir)

	CRITERES	FACTEURS
Empoussièrement :		f _e =
Vieillissement des lampes		f _L =
Altération des luminaires		f ₁ =
$d = \frac{1}{f_e} \times \frac{1}{f_L} \times \frac{1}{f_I} =$		d =

3 - CALCUL DU NOMBRE DE LUMINAIRES $N \ge \frac{(E \times a \times b).d}{(n \times F_{la}).u}$

3-1 - Facteur d'utilisation : $u = \eta_i \cdot U_{X(A-J)} + \eta_s \cdot U_T$

UTILANCES: Ux

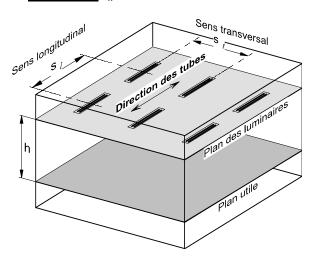
	<u> </u>		
<u>Données :</u>	<u>Données :</u>	ÉCLAIRAGE DIRECT	ÉCLAIRAGE INDIRECT
Facteurs de ré (x10) :	Facteurs de réflexion : (x10) :	Classe photométrique : Rendement : η _i =	Classe unique T Rendement : η s =

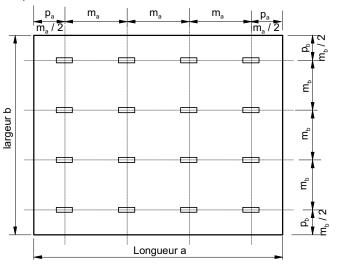
Suspension: J =

Local: K =

Classe photométrique :	Classe unique T
Rendement : η i =	Rendement : η s =
U =	U _T =

 $\underline{\mathsf{FACTEUR}\;\mathsf{D'UTILISATION}}\colon u = \eta_i \cdot U_X + \eta_s \cdot U_T$


$$u = \eta_i \cdot U_X + \eta_s \cdot U_T =$$


3-2 - Nombre de luminaires

$$N \ge \frac{(E \times a \times b).d}{(n \times F_{la}).u} = ------$$

N ≥

3-3 – Répartition (pour obtenir un facteur d'uniformité ≥ 0,8)

Sens longitudinal / tubes	Sens transversal / tubes
S₁≤	S _t ≤
Files : N₁≥	Files : N _t ≥

Implantation théorique :